NRYZ-2008

变压器有载开关测试仪

明

书

武汉南偌电气有限公司

湖北省・武汉市・东湖技术开发区光谷大道58号光谷总部国际4栋8楼

NANR·南偌____

声明

武汉南偌电气有限公司

版权所有,保留所有权利。

本使用说明书所提及的商标与名称,均属于其合法注册公司所有。

本使用说明书受著作权保护,所撰写的内容均为公司所有。

本使用说明书所提及的产品规格或相关信息,未经许可,任何单位或个人不 得擅自仿制、复制、修改、传播或出版。

本说明书所提到的产品规格和资讯仅供参考,如有内容更新,恕不另行通知。 除非有特殊约定,本说明书仅作为使用指导,本说明书中所有陈述、信息等 均不构成任何形式的担保。

目录

_`,	功能特点	错误!未定义书签。
<u> </u>	主要技术指标	错误!未定义书签。
Ξ,	结构及面板说明	1
四、	操作指南	2
五、	测试仪记录波形判读说明	7
六、	常见故障及解决方法	
附录	Ļ 	

NANR·南偌_

-、功能特点

变压器有载开关测试仪,是用于测量和分析电力系统中电力变压器及特种变压器有载 分接开关电气性能指标的综合测量仪器。它采用微电脑控制,通过设计的精密测量电路, 可实现对有载分接开关的**过渡时间、过渡波形、过渡电阻、三相同期性**等参数的精确测量。 用户可根据需要和现场条件,直接由分接开关引线进行测量,也可由变压器三相套管及中 性点直接接线测量。

该仪器具有对所测数据进行显示、分析、存储、打印等功能。解决了目前电力变压器 有载分接开关测量方法落后,没有专用测试手段的问题。可在电力设备预防性试验及变压 器大修中及时诊断出有载分接开关的潜在故障,对提高电力系统运行的可靠性具有重要意 义。

二、主要技术指标

参数	指标	参数	指标
电压输出	>20V	工作电源	AC220V±10%, 50Hz
电流输出	≥1A	功率	180W
电阻测量范围	0.3~50Ω	电阻测量精度	0.1Ω~1Ω±0.1Ω,1Ω~50Ω±5% (不含1Ω)
时间测量范围	1ms~256ms	时间测量精度	1ms~100ms±0.1ms 100ms~250ms±1%
三相同期性	0.1ms	采样频率	10~20KHz
工作温度	0~40°C	工作湿度	≪80%RH
外形尺寸	420mm×350mm× 220mm	重量	12kg (含附件)

三、结构及面板说明

整个仪器由测量本体和标准行式打印机组成。其中测量本体采用独立机箱结构,具 有抗震、防电磁干扰特性。仪器的操作面板如图1所示

NANR·南偌

- 菜单向下移动,修改项数值减1,波形光标选择,波形阻值减小。
- 菜单向左移动,修改项数值加1,波形光标向左移动。

菜单向右移动,修改项数值减1,波形光标向右移动。

四、操作指南

▼

(一) 接线

1、带变压器线圈测量

如图2所示为一典型带有载分接开关的电力变压器原理图

将仪器内附的4根(红、绿、黄、黑)大线夹取出来,用大线夹夹住变压器高压端子的A、B、C和中性点O端,将线的另一接线端子分别插入仪器面板上的A、B、C、O插孔。

用小夹子将变压器低压侧的A、B、C、O端子短路接地即可。

2、吊芯测量有载分接开关

在变压器大修时,有载分接开关吊出没有线圈如图2所示。先把每一相中开关连接的 触点短路,用仪器附带的4根(红、绿、黄、黑)小线夹分别夹住A、B、C相的短路点和 中性点,另一接线端子分别插入仪器即可。

(二) 开机

检查接线无误后,打开仪器电源开关。开机画面如图3所示。此时,若须修改当前测量开关的档位、系统时钟、次数、存储内存等,可按【设置】键键入主菜单进行设置;若须修改测量范围直接按量程进行修改,无须修改相关设置时,按【测试】键直接进行测试, 查阅键查看已有波形。若有任何其它问题可按【帮助】 键寻求帮助。

图 3

(三) 设置

1. 档位: 按【设置】键,出现界面如图4所示。若需修改档位按【确认】键进入图5

所示,选择准备测量的初始档位,实际的档位值会随以后的测量而自动改变。档位以 "xx-> xx"表示,按【▲】键上调,按【▼】键下调。例如档位为"07->08",按【▲】 则变为"08->09",反之按【▼】则变为"07->06",按【退出】键修改完毕。

图 4

图 5

2. 时间:按【确定】键进入,年、月、日及时间的设置,其设置界面如图6所示。用
 【 ▲【 ▶键选择要修改的位,用【▲】、【▼】键改变日期或时间,设置好后按【退出】
 键结束。

3. 触发: 按【确定】键进入,屏幕中间弹出一个对话框,如图7所示。按【 】 【 】 键 上择要设置的项目,按【▲】和【 ▼】键修改所选项。设置好后按【退出】键结束。设置次数表示连续切换开关并自动保存和调节档位的次数。设置门限值,测试中若切换开关尚未动作仪器就采到波形,说明门限值太高了,此时,应将门限值调大;若切换开关已动作,仪器却未采到或只采到半截波形,则门限值太低了,应将门限值数值调小。

4. 内存:按【确认】键,进入如图8所示界面,要格式化内存直接按【确认】键,按【▶】键确认出现如图9所示,按【▲、▼】键可选择当前文件名进行存储。按【确认】键存储到SD卡,存储完之后按【退出】键结束。

图 8

图 9

(四) 量程

在开机界面下按【量程】进入仪器测量范围设置。如图10所示。此时,按 【 】 】 】 键选择"小量程"或"大量程",按【退出】键退出设置。开机默认为小量程模式,两者的区别是:小量程的最大测试电阻为20Ω,大量程的最大测试电阻为40Ω。

		测试
		设置
0-20	0-40	量程
		查阅
		帮助

图 10

(五)测试

 按【测试】键仪器显示各路的充电时情况,如图11所示,右侧变动的数据为每一 路测到的电压值。当右侧变动的数据基本稳定,则充电完毕,这时按【确定】键开始测试。

屏幕画面如图11所示:表示仪器正在捕捉被测开关的切换过程,此时不想进行测试可 长按【退出】键结束测试。

2. 启动有载开关,当听到有载开关动作对触头进行切换的声音时阻值随之发生变化。 仪器将**自动搜索**到过渡波形,并显示在屏幕上,如图13所示。

同时,在屏幕上用光标显示出自动查找的动作点位置和计算的测量参数值。此时,按 【相序】键改变选择调整A、B、C三项相;按【◀】、【▶】键移动当前光标位置;按【▲】、 【▼】键改变所选的光标。如果自动选择的光标不在明显转折点,可手动移动四条光标到 波形的串联、并联的明显转折处,光标调节好后按确定键显示屏上将直接显示出波形时间 和电阻值。

处理好三相的参数后,要打印测试波形和数据则可按【打印】键进行打印(打印的图 纸包括波形和处理的参数值)如图14所示。按【详参】键屏幕单独显示波形的详细参数,按 【打印】键可单独打印参数(不包括波形)。

如需存储测试波形和参数,可按【存储】键进入波形存储,在左下角显示存储位置如 图15。

(六) 査阅

NANR·南偌

在开机画面下,选择【查阅】键进入查阅界面。则显示屏出现如图16所示画面,可用 【 ▲【 ▶键前后翻页,用【▲】、【▼】键改变闪烁光标的位置即要查阅波形的位置, 再按【确认】键则显示屏显示出要查阅的波形和参数,显示画面如图16所示,此后的操作

图 16

与【测试】部分相同。若要删除此条记录可按【删除】键,系统将在确认后删除。若要改变所查看的文件可按【文件】键,选择方法与设置文件过程中相同,在选好文件后按 【确定】键完成选择。

五、测试仪记录波形判读说明

(一)测量记录过程的理想直流波形及测试规范

从有载开关动作过程来看,有几个参数尤为重要,其一即开关触头变换程序,具体须 测量出整个切换过程的动作时间t₄切换过程的波形变化,从波形图上应能看出三相是否同 步等;其二是各触头联接的过渡电阻,其中阻值还包括引线部分。如下表所示列出了长征 电气一厂有载开关的参考指标(厂家不同指标有所不同)和测量参考值。 切换开关触头变换程序:(单位:ms)

直流示波图	测量值		单	双			双	单	
	相数	t1	T2	t3	T4	t1	T2	t3	T4
t1 T2 t3	А	20	6	18	44	20	5	18	43
	В	20	5	18	43	21	5	17	43
T4	С	22	6	18	46	22	4	18	44
$T_2=2\sim7$									
$t_1 \ge 15$	三相不同步						∆ _t =3	R=10%	
t₃≈20ms									
$T_4 = 35 \sim 50$									

(二)关于测试波形参数的说明

1. 有载开关过渡波形如图 17 所示:

NANR·南偌

图 17 有载开关过渡波形

光标1是R₁电阻单独接触开始时刻

光标 2 是 R1 电阻和 R2 电阻同时接触时刻

光标3是R1电阻释放,R2电阻单独接触开始时刻

光标4是切换完成时刻

2. 确定过渡电阻值

要观察各段波形的电阻值,需将光标2移到要观察的波形段(应选择较为平直处),如图17所示:

光标 1-光标 2 之间,可以得到过渡电阻 R₁的值

光标 2-光标 3 之间,可以得到过渡电阻 R1和 R2的并联值

光标 3-光标 4 之间,可以得到过渡电阻 R₂的值

3. 确定过渡时间

当光标调整好位置后,屏幕下方显示的时间值为:

T0 是三相同期,确定 A、B、C 三相的同期性,只看 A、B、C 三相 T0 的值就可以。如图 17 所示,仪器以 A 相光标 1 为参照, A 相 T0 值始终为 0,如 B、C 两相中某相时间超前,则超前相 T0 值不等于 0,该时间为三相不同期时间。

三相有载分接开关的同期性问题,并没有明确的规定,不同期性一般不大于 5ms 即可。 但如果是一台开关三相并联当成一相使用,这台开关的三相不同期性一般要求不大于 2ms。

T1 是 R1 串联时间, T2 是 R1 和 R2 并联的时间, T3 是 R2 串联时间, T4 是该开关的切换的过渡时间。一般情况光标会自动停在整个过渡波形的转折位置。

4. 单相测试时波形判断方法

单相测试接线示意图(A、C相)如图18所示。

这种结构的试品在不吊芯情况下,中性点无法引出,只好两相两相地做,如果同期性 好的,其波形与图 19 相似;同期性不好的,波形与图 20 相似,但不能确定是哪一相早或 晚,当波形中出现断点时,也无法确定是哪一相。有时可通过三次组合(ab、bc、ca)初

步分析判断,由于测试中过渡电阻值变化范围较大,使用仪器应注意选择合适的灵敏度。 有载调压绕组三角形接法也可以按照这个方法接线。

5. 两相同时测试时,接线图如图21所示:

图21 两相接线图

三相同期时,其波形图如图 22 所示:

对于 A 相(设三相同期, 且 A、B 两相电流完全一致)

 $t_1 - R_{A1} + R_{C1} \times 2$ $t_2 - (R_{A1} / / R_{A2}) + (R_{C1} / / R_{C2}) \times 2$

t₃—R₄₂+R_{C2}×2 t₄—切换结束

在这种测试方式下,若三相不同期,则可通过换相测量看波形开始时刻分析出不同期 的相。

NANR·南偌____

六、常见故障及解决方法

故障现象	故障原因及解决方法		
开机后显示屏无显示	检查 AC220V 电源及保险管。		
三相电流不平衡	检查测试接线,确保接触良好。		
测试不正常	检查灵敏度和量程设置,选择合适的灵敏度和量程。		
打印机不打印	 检查打印机指示灯,如不亮按 SEL 键使之亮。 检查是否有打印纸。 按住【走纸】键再接通电源,待纸走动时再松开 【走纸】键,打印机开始自检。 检查打印机插接件是否松动,确保接触良好。 		

七、随机附件

测试夹带10米测试线	4根
鳄鱼夹带1米测试线	4根
电源线	1根
SD存储卡	1个
读卡器	1个
说明书	1本
光盘	1张
打印纸	2卷