绝缘油介电强度测试仪校验装置一体

武汉南偌电气有限公司

湖北省・武汉市・东湖技术开发区光谷大道58号光谷总部国际4栋8楼

声明

武汉南偌电气有限公司

版权所有,保留所有权利。

本使用说明书所提及的商标与名称,均属于其合法注册公司所有。

本使用说明书受著作权保护,所撰写的内容均为公司所有。

本使用说明书所提及的产品规格或相关信息,未经许可,任何单位 或个人不得擅自仿制、复制、修改、传播或出版。

本说明书所提到的产品规格和资讯仅供参考,如有内容更新,恕不 另行通知。

除非有特殊约定,本说明书仅作为使用指导,本说明书中所有陈述、 信息等均不构成任何形式的担保。

		目 茅	1. C
前		言	1
第−	-章	章 引言	2
	1.1	1 仪器简介	2
	1.2	2 特性和技术参数	2
第二	_章	章 装置组成	4
	2.1	1 硬件组成	4
	2.2	2 软件组成	7
第三	E章	章 仪器软件操作	
	3.1	1 仪器设置	10
	3.2	2 示波器操作与设置	
	3.3	3 通道滤定	
	3.4	4 数据保存与读取	14
	3.5	5 生成试验报告	14
	3.6	6 自动评估	16
	4.1	1 试验流程设计	17
	4.2	2 检测过程	
	4.3	3 检测结果	

NANR·南倍____

前 言

本手册的目的是为了让用户熟习绝缘油介电强度测试仪校验装置的功能和正确的使用方法。手册的内容包括仪器的技术指标,操作方法,试验连线和安全风险等方面,仔细阅读本手册将有助于您快安全,快速,准确的完成各个试验项目,并且能有效地避免错误操作导致仪器损坏或减少仪器的使用寿命。

绝缘油介电强度测试仪使用安全规程和特别注意环节:

 1)对被试验的绝缘油介电强度测试仪进行检测前,首先在未连接校验装置和 任何负载的情况下对其进行空升至最大电压试验,确定空升至最大输出电压过程 中无放电现象发生以后,再连接校验装置。以避免因绝缘油介电强度测试仪对机 壳剧烈放电造成校验装置的损坏。

2) 分压器的最大输入电压为 50KV,因此被检测的绝缘油介电强度测试仪电压范围是-50KV[~]50KV

3)高压分合终端的最大允许输入电压为80kv,因此在测量电压高于100kv 的绝缘油测试仪的输出电压时,请断开击穿控制箱的高压输入,否则会造成高压 分合终端内部绝缘击穿放电。

4)高压分合终端的三对电极均需要使用绝缘罩子盖住,以避免电极之间放电, 或电极对分合终端的机壳放电

5)从绝缘油介电强度测试仪引出高压时必须使用环氧树脂制成的绝缘罩,以 避免在引出高压线至分压器的回路上发生放电

6)在测量额定频率为60Hz的高压信号时,请将仪器的校准系数调整至60Hz 状态,在测量额定频率为50Hz的高压信号时,请将仪器的校准系数调整至50Hz 状态,50Hz和60Hz的测量系数差别约为0.1%。

7) NRDS-100 型绝缘油介电强度测试仪测量所得的击穿电压计算公式如下:

 $(V_{max} - V_{min})/(2*\sqrt{2})$, 其中 V_{max} 是指击穿前一个周期的最大值, V_{min} 是击穿前一个周期的最小值, V_{max} 和 V_{min} 之差为击穿前一个周期的峰峰值之差

1

Wuhan NANR Electric Co., Ltd.

第一章 引言

1.1 仪器简介

绝缘油介电强度测试仪校验装置是针对电力试验计量院所绝缘油介电强度测 试仪计量校准而设计的专业仪器,仪器可以完成对绝缘油介电强度测试仪的击穿 电压,升压速率和波形畸变等性能参数检测,自动给出检测结果报告,该装置以 绝缘油介电强度测试仪击穿瞬间的电压作为检测依据,计算仪器的误差,相对于 以往稳态校准的方式更直观,准确和有效。

1.2 特性和技术参数

1.2.1 软件系统

绝缘油介电强度测试仪校验装置的硬件和软件特性包括:

1 采用主动击穿方式,在指定点构造击穿条件,检测被试品的击穿电压读数 误差

2 实时显示被试品的输出电压波形,记录被试品击穿瞬间的电压波形图,可 以方便的分析被试品的切断时间

3 2 路高压信号采样,同时检测绝缘油介电强度测试仪的两个高压臂高压信 号

4 仪器能够自动生成格式规范的 WORD 试验报告

5 各种试验的试验环境设置和仪器设置自动保存

6 自动计算各种试验的试验参数

7 实时绘制试验曲线,并且提供多种曲线分析工具,使用户可以对曲线进行 任意缩放和定位操作

1.2.2 技术参数

1 10KV~100KV 测量误差小于 0.2%RDG+0.04kv

2 升压速率测量误差小于 0.5%

- 3 时间读数分辨率 39us
- 4 供电电源 AC220V±10% 50Hz
- 5 最高测量电压: 100kv (-50kv~50kv, 未连接击穿控制箱)
- 6 最高击穿电压: 80kv
- 7 分压器电容值 10pf, 最高测量电压 50kv (50Hz/60Hz)
- 10 击穿控制箱允许最大输入电压 80kv
- 11) 支持应用软件系统的计算机必须符合以下要求:
- 1> CPU 主频>1.5GHz
- 2> 系统的内存>1GB
- 3> 计算机的操作系统为 Windows XP/ Windows 7
- 4> 计算机的硬盘>40G
- 5> 具有 USB2.0 接口
- 12) 使用温度范围: 0[~]50 摄氏度, 湿度<80%

1.2.3 应用领域

- 1 绝缘油介电强度测试仪稳态误差校验
- 2 绝缘油介电强度测试仪击穿误差校验
- 3 绝缘油介电强度测试仪升压速率校验
- 4 绝缘油介电强度测试仪波形畸变率校验

第二章 装置组成

2.1 硬件组成

整个绝缘油介电强度测试仪校验装置由仪器主机,高压分压器(2个),高压 分合终端,隔离模块,高压引线,采样连接电缆等组成。

图 1 绝缘油检测装置

2.1.1 采样主机

仪器主机如图1所示, 仪器主机后面板包括分压器低压臂隔离后的信号输入接口 (6芯航插), 高压分合终端控制输出(3芯航插), USB连接口(连接计算机)。 仪器主机的前面板包括两个信号指示灯电源信号和击穿控制箱(即高压分合终端) 状态指示。击穿控制箱状态指示灯亮时表示控制箱内的高压连接点处于低阻状态

2.1.2 高压分合终端

高压分合终端用于将输入的高压信号瞬间短接,使放置在分合终端内的油杯间隙 发生放电以模拟绝缘油击穿,在绝缘油介电强度测试仪无特殊要求的情况下可以 使用空油杯(以空气放电模拟油击穿)作为放电负载。

如图1所示,高压分合终端面板上包含了电源插座,2A保险和3芯航插的控制信

号输入

高压分合终端顶部为高压仓,高压仓包含三对电极,三对电极含义如下:

1 右边第一对电极用于控制击穿放电,进行校验操作时,该点放置击穿电压低的油或者直接使用空杯。

2 中间第二对电极为负载杯,试验时该油杯模拟测试仪带负载状态,不使用时请 直接用绝缘罩盖住

3 左边的一对电极为高压引入端子,试验时被检测的绝缘油介电强度测试仪高压 输出由此处引入。

三对电极连接的原理图如图 2 所示。

注意:

1) 高压分合终端的最大允许输入电压为 80kv,因此在测量电压高于 100kv 的绝缘油测试仪的输出电压时,请断开击穿控制箱的高压输入。

 高压分合终端的三对电极均需要使用绝缘罩子盖住,以避免电极之间放电,或 电极对分合终端的机壳放电

图 2 分合终端原理图

2.1.3 隔离模块

当分合终端内发生击穿放电时会产生巨大的干扰通过分压器耦和至采样主 机,该信号会对采样主机产生冲击,因此通过隔离模块将两个系统进行电气隔离

Wuhan NANR Electric Co., Ltd.

以达到减少冲击的目的,试验时隔离模块置于分压器和采样主机之间,并且让采 样主机与分合终端的物理距离保持在 2M 以上。

2.1.4 分压器和高压连接线缆

为了保证足够可靠的绝缘性,测试过程中被检测的绝缘油介电强度测试仪高 压端子采样如图1中所示的黄色绝缘杆支出(或使用环氧树脂制作的绝缘罩引出 高压线),然后经过高压电缆和另一对绝缘杆接入高压分合终端。

绝缘油介电强度测试仪校验装置提供两个分压器,分压器的参数如下:

- 1) 电容量值均为10pf
- 2) 介质损耗值小于<10-5
- 3) 最高输入电压<50kv
- 4) 额定工作频率 50Hz/60Hz, 在 50Hz 和 60Hz 下分压比差别<0.1%

图 3 测试系统连线图

2.1.5 测试系统安装与连接

进行测试时绝缘油校验时采样主机,隔离模块,分压器和分合终端的连接原 理如图 3 所示

2.2 软件组成

绝缘油介电强度测试仪校验装置的软件组成如图 4 所示:

Wuhan NANR Electric Co., Ltd.

	绝缘油测词	仪检定装置(1.2.6.27)	
新建试验 保存	读取 仪器设置	示波器设置 通 信设置	系统帮助
	请选择	义器工作模式	
		工具	
	试	油机检定	
	试验流程设计	科学计算器	
	关闭系统	软件重启	
仪器状态: 脱机 查看历史数据	当前项目:	绝缘油检定试验	
空升最高电压检验 检验升压速率	击穿电压检验点4个	下一组设置	开始试验 查看结果

图 4 主机软件主界面

图 5 主机软件示波器

1 仪器最上面的按钮所在栏目为仪器操作工具栏

在仪器操作工具栏可以选择新建试验,保存数据,读取数据,设置仪器参数,设 定仪器通道配置,示波器设置,导出数据,查看系统帮助等操作。

8

2 试验项目选择栏

在图 4 中, 仪器操作工具栏的下方蓝色区域为试验项目选择栏, 用户在试验项目 选择栏选择要进行的试验项目或仪器工作模式, 点击工具栏的新建试验将会出现 试验项目选择栏

3 工作状态显示栏

试验项目选择栏的下方蓝色区域为工作状态显示栏,此处会显示的信息包括,仪 器运行状态,当前试验项目,当前系统时间等信息。

4 示波器

进入选择的试验项目后,试验项目选择栏会消失出现如图 5 所示的录波器,当试 验运行时,录波器显示当前的实时曲线,试验停止后,示波器显示击穿瞬间的电 压曲线,并提供曲线分析功能,用户可以通过"工具尺"定位曲线某一点的信息, 也可以缩放查看曲线的局部信息。

5 试验参数显示栏

在工作状态显示栏左下方为试验参数显示栏,在选择试验后,此栏会显示当前试 验的参数配置,点击设置参数可以改变当前的试验参数配置。

6 试验操作栏

在工作状态显示栏右下方为试验操作栏,此处可以控制试验的开始,停止和数据、 曲线结果显示转换。

第三章 仪器软件操作

在绝缘油介电强度测试仪校验装置的附件光盘中有一个"JY100 OIL TESTER CALIBRATIO SET.MSI"的安装包文件,点击该安装包文件计算机将会自动安装 NRDS-100 的软件系统和装置所需的驱动程序。如果在插入装置的 USB 电缆,并 且仪器主机开机时提示驱动程序不正确,请引导计算机至软件安装目录的 "Driver"文件夹下,手动安装该目录下的驱动程序。NRDS-100 应用软件的默认 安装路径为"C:\Program Files\JY100 OIL TESTER CALIBTAION SET" 安装 NRDS-100 应用软件的计算机必须符合以下要求:

- 1) CPU 主频>1.5GHz
- 2) 系统的内存>1GB
- 3) 计算机的操作系统为 Windows XP/ Windows 7
- 4) 计算机的硬盘>40G
- 5) 具有 USB2.0 接口
- 3.1 仪器设置

测试仪信息		
设备编号	922001	时间设置
试验单位	武汉高压研究院	虚拟键盘
操作人员	武汉高压研究院	
试验地点	武汉高压研究院	软件升级
报告页眉	武汉高压研究院	
报告页脚	武汉高压研究院	40.11
试验编号	1	确定

图 6 仪器设置

仪器设置选项用于设置试验单位,试验人员,试验地点等信息。所有这些设置信息会被自动加入到试验报告中,在软件操作主界面中点击"仪器设置按钮"

出现图 6 所示仪器设置对话框。设置参数后重启软件,所有的设置信息都会被自动保存,下次再次启动软件时系统时会维持上次修改的运行参数,仪器设置的所有参数不影响试验流程控制和结果参数计算,所有这些参数只与 word 试验报告的显示有关。

仪器设置界面中的参数含义为:

1 测试仪信息:当前的试验地点,试验人员,试验单位,仪器编号,试验编号,试验编号,试验报告页脚/页眉内容,这些信息都会被反应在自动生成的试验报告中,便于仪器自动生成规范的试验报告

2 时间设置: 点击"时间设置"按钮可以设置系统的当前时间信息。

3 虚拟键盘:如果仪器启动后右上角没有橙黄色的方形图标,则可点击此处的"虚拟键盘"启动仪器的虚拟键盘,虚拟键盘的功能和实际键盘完全一致(Q 对嵌入式主机版本的软件有效)

4 软件升级接口,是仪器的应用软件自动升级接口,仪器供应商会根据使用 过程中用户的反馈发布新的仪器软件升级包,用户可以从供应商处获得软件升级 包。(仅对嵌入式主机版本的软件有效)

3.2 示波器操作与设置

示波器用于展示升压过程中的实时电压波形,其中黄色的曲线为两个电极之间的高压信号即仪器的高压输出,红色和蓝色的曲线分别是两个电极对大地的高压信号。示波器窗口的左上方会提示当前高压的有效值,单个电极的高压有效值, 当前仪器状态以及已经记录的数据长度

在测试过程完成后示波器可以回放记录的击穿瞬间电压波形如图 5,对于已 经存储的击穿瞬间电压波形可以进行以下操作:

1) 放大和缩小

点击软件界面的示波器设置出现如图 7 所示界面,在图 7 所示界面中更改曲 线的 Y 轴坐标和 X 轴坐标,可以实现对曲线的放大和缩小

使用鼠标可以实现曲线的快速放大,操作方法为按下鼠标左键,从左至右滑 动鼠标,软件屏幕上会出现一个选择框,然后释放鼠标左键则软件会按照选

择的区域对曲线进行放大。再次读取该组曲线时,曲线的坐标系统会恢复至 默认状态

2) 显示数值分辨率调整

点击软件界面的示波器设置出现如图 7 所示界面,在图 7 所示界面中更改 X 轴和 Y 轴的小数点,可以实现数值分辨率的调整

3) 曲线的隐藏与重新

点击软件界面的示波器设置出现如图 7 所示界面,在图 7 所示界面中通过高 压臂 1,高压臂 2 和高压输出的显示复选框,可以实现红色曲线,蓝色曲线和 黄色曲线的显示和隐藏

4) 曲线展示模板参数调整

每次试验结束后,软件系统会以默认的模板坐标展示记录的击穿电压波形, 在仪器处于"等待试验"(点击新建试验后仪器左下方会提示仪器状态),修 改示波器的配置时,该配置会被更新至仪器试验模板。在其他状态,如果用 户在更改示波器的配置后选择了图7中的"更新试验模板",则该配置也会被 更新至试验模板

5) 曲线数值读取

点击软件界面的示波器设置出现如图 7 所示界面,在图 7 所示界面中选择启动工具尺,则仪器显示如图 5 所示,示波器界面中会显示一条红色定位线, 该线所对应的时间刻度和对应的曲线数值会显示在示波器的右边。通过示波 器顶部的滑动条可以调整定位线的位置,以读取不同位置的曲线数值 注意:结合击穿电压的波形和定位线可以读取绝缘油介电强度测试仪的切断

时间

NANR·南偌_

Y坐标设置			
通道名称	是否显示	Y轴最小值	Y轴最大值
高压臂1		-19.65 ÷ KV	9. 905 茾 KV
高压臂2		Y轴小数点…	
高压输出		2	
X坐标设置	其他	也设置	
X坐标起始 0.14	6 🗧	■ 更新试验模	退出
X结束坐标 0.16	D 🗧 📘	■ 启动工具尺	8
X坐标小数占 3		■ 默认坐标	确定

图 7 示波器设置

3.3 通道滤定

通道率定是指设定主机采样通道实测信号值和真实物理量的对应关系,在软件主界面点击"通道率定"按钮出现图8所示界面。通道滤定用于主机接与不同分压器时的精度校准,滤定点一和滤定点二是指2个不同的校准点,校准点值的含义为:"滤定一和滤定点二的第1栏和第2栏填写的值都为一样的数值时,仪器主机测得的分压器低压侧实际电压值对应的分压器高压值"。

图 8 通道滤定 1

局比和出	率定				试品频率选择
率定点一	0.000	🗘 V	0.000	🗘 kv	○ 50Hz
率定点二	2.977	🗘 V	49. 900	🗘 kv	○ 60Hz
高压臂23	▶定(V2)				修改系数
率定点一	0. 000	🗘 V	0. 000	🗘 kv	取消
			The second secon	COM Service	

图 9 通道滤定 2

例如分压器滤定点一和二的设定分别为 0V->0kv, 10v->10kv 如图 8 所示, 此时高压输出为 49.9kv 时, 仪器测量的低压臂矢量合成电压为 29.77V, 分压器 B高压为 24.95kv, 低压臂测量电压为 30.3V,则记录完成后应在滤定点 1 第一栏填写 0->0, 第二栏填写 2.977->49.9, 滤定点二第一栏填写 0->0, 第二栏填写 3.03->24.95,填写以后如图 9 所示,完成通道滤定后,仪器显示的电压值为接入该分压器的实测高压值。

通道率定项目在出厂时已经被固化,如果需要更换分压器请与供应商联系进 行再次率定

3.4 数据保存与读取

试验完成后仪器会提示用户是否保存当前的试验数据,点击软件主界面的保存按钮,则当前的试验数据会被保存至计算机,保存的文件名称格式为"××年××月××日××时××分××秒 绝缘油检测试验",只有在"查看数据","查看结果","查看历史数据"和"查看历史结果"状态时才可以保存数据。

点击软件主界面的读取按钮会出文件选择对话框,选择要读取的历史试验文件,则仪器进入查看历史数据或结果的状态,所保存的试验曲线,结果和当时的 试验环境都会被重现。读取历史数据界面也可以删除存储器中所存储的历史试验 文件。

3.5 生成试验报告

	绝缘油测试仪检定	装置(1.2.6.27)	
新建试验 保存 读取	(被器设置 通信;	设置 系统帮助
校验点1: 仪器值/试品值(kv)	校验点2: 仪器值/	试品值(kv)	校验点3: 仪器值/试品值(kv)
10.69 🚽 / 0.00 🚽 非计算项	22.98 + / 0.00) 🚽 非计算项	30.96 🕆 / 30.50 🕆 1.51%
校验点4: 仪器值/试品值(kv)	校验点5: 仪器值/	试品值(kv)	校验点6: 仪器值/试品值(kv)
38.03 🚽 / 0.00 🚽 非计算项	50.90 🛬 / 0.00	非计算项	59.85 🚽 / 0.00 🚽 非计算项
校验点7: 仪器值/试品值(kv)	校验点8: 仪器值/	试品值(kv)	校验点9: 仪器值/试品值
69.75 🚽 / 0.00 🚽 非计算项	0.00 + / 0.00	🚊 非计算项	0.00 🚽 / 0.00 🚽 非计算项
校验点1升压速率: 校验点:	升速率:	校验点3升压速率	: 平均升压速率:
2.12kv/s 误差6.06% 1.99kv/	s 误差-0.44%	1.99kv/s 误差-0	.55% 2.04kv/s 误差1.80%
波形畸变率: 0.80% 波形畸	变率: 0.94%	波形畸变率: 1.	26% 平均畸变率: 1.00%
最大输出电压: 70.51kv	4	金测合格	重新评估
试验时间:2010年01月31日19时55分20;	步 生	或报告类型: ₩ORD	试验报告 🗾
试验地点: 武汉高压研究院	操	作人员:武汉高压研	F究院 生成报告
试验单位: 武汉高压研究院	试	脸号: 000001	
仪器状态: 脱机 查看历史结果	当前项目: 绝缘	油检定试验	
空升最高电压检验 检验升压速率 击穿印	3压检验点1个	下一组设置	开始试验 查看数据

图 10 试验结果展示界面

试验完成后,试验结果以图 10 的方式展示,在结果查看器中选择生成报告类型,然后点击生成报告则在仪器中会自动生成 WORD 格式的试验报告,试验报告的名字与保存的试验文件名字相同,生成试验的试验报告格式如图 11 所示。

下保存了仪器的运行参

1	SITER		—————————————————————————————————————
	绝缘油榄定试验报音		NKL.
			釵。
0-10-10-0000000000000000000000000000000			
试验时间,2010年01,	9,31 日 19 时 55 分 20 창		
《赵建州, 武汉高五年,	F.R.		
1004C SURE	ಗಳು ರಚರೆಗಳನೆನಹಲವು ಜಿಜ್ಜಿಗಾ	- 000001	
SELFACE BALMERY			
2 试验结果			
最大输出电压(标称值,	70.00km 亢华误差 3%),70.51km		
升压速率和波形畸变率	(升压速车标准值 2.0km/s 亢许误益	10.00%).	
检测点(10km-30km)	麦车, 2.12km/s 误益, 6.06%	時变定, 0.80%	
检测点(30km-50km)	夏草. 2.12km/s 说道0.44%	府交车 , 0.945	
检测点(50km-65km);	ē年, 2.12km/s 読益, −0.55%	時空車. 1.268	
标准度(如	(25五示(C(kr)	调整	
30.96	30, 70	0.84%	
	2 2		
检测结论: 合格			
检测结论: 合格 夏檢:			
检测结论:合格 夏辕: 夏辕日期:	<u>्र</u> ि निः		
检测结论: 合格 更敬: 更敬日期:			

Wuhan NANR Electric Co., Ltd.

图 11 试验报告

3.6 自动评估

在启动试验时软件会提示用户输入自动评估的标准,评估标准包括,允许的 最大误差,最大输出电压,升压速率,升压速率允许最大误差等。如果用户设定 了正确的评估标准,并且在试验结束后输入被检测绝缘油介电强度测试仪的击穿 电压数值,然后点击图 12 所示的自动评估按钮,则软件会根据设定的标准和实测 的数据对绝缘油介电强度测试仪的检测结果进行自动评估并给出评估结论

图 12 自动评估

注意:

型绝缘油介电强度测试仪测量所得的击穿电压计算公式如下: $(V_{max} - V_{min})/(2*\sqrt{2})$,其中 V_{max} 是指击穿前一个周期的最大值, V_{min} 是击穿前一个周期的最小值, V_{max} 和 V_{min} 之差为击穿前一个周期的峰峰值之差

第四章 试验操作

4.1 试验流程设计

试验流程是指检测过程按照一个什么样的顺序执行,试验流程设计界面如图 13 所示,可以设定的流程包括,电压检测点的个数和检测点的数值,升压速率和 波形畸变率检测区间和是否进行最高输出电压检测等。

N LLL M	验					
1校验点	10 🗘	kv □ 校验	第6校验点	60 🗘	kv □ 校验	
2校验点	20 🗘	kv ☑ 校验	第7校验点	70 🗘	kv ☑ 校验	
3校验点	30 🗘	kv ☑ 校验	第8校验点	80 🗘	kv □ 校验	
4校验点	40 🗘	kv ☑ 校验	第9校验点	90 🗘	kv □ 校验	
5校验点	50 🗘	kv ☑ 校验				
压速率和	波形畸变	校验点———				取消
满电压空	:开检定 10	\$ kv至 30	¢ kv	☑ 校验		
满电压空 1 校验点 5 2 校验点	10 30	 kv至 30 kv至 50 	kvkv	☑ 校验☑ 校验		

图 13 试验流程

例如图 13 所设定的试验流程:

第1步 当仪器主机界面显示通信就绪,绝缘油介电强度测试仪应该先升压至 20kv,装置检测到电压升至20kv时会控制高压分合终端,使被试的绝缘油介电强 度测试仪检测到击穿然后返回。

第2步当仪器主机界面显示通信就绪,绝缘油介电强度测试仪从0开始升压 至30kv,装置检测到电压升压至30kv时会控制高压分合终端,使被试的绝缘油 介电强度测试仪检测到击穿然后返回。

第3步当仪器主机界面显示通信就绪,绝缘油介电强度测试仪从0开始升压至40kv,装置检测到电压升压至40kv时会控制高压分合终端,使被试的绝缘油介电强度测试仪检测到击穿然后返回。

第4步当仪器主机界面显示通信就绪,绝缘油介电强度测试仪从0开始升压

至 50kv,装置检测到电压升压至 50kv 时会控制高压分合终端,使被试的绝缘油 介电强度测试仪检测到击穿然后返回。

第5步当仪器主机界面显示通信就绪,绝缘油介电强度测试仪从0开始升压至70kv,装置检测到电压升压至70kv时会控制高压分合终端,使被试的绝缘油介电强度测试仪检测到击穿然后返回。

第6步当仪器主机界面显示通信就绪,绝缘油介电强度测试仪从0开始升压 至最大电压输出值,装置检测到电压上升至最大值后返回,自动记录最高电压时 段的波形,并计算此过程中各段的升压速度和波形畸变。

4.2 检测过程

设定好流程以后检测装置会安装流程自动记录各次检测值,在此过程中,每 个流程开始时都必须保证仪器主机显示为通信就绪状态。每次仪器主机控制击穿 以后高压分合终端和仪器主机的通信恢复需要大概 30s 时间,所以在检测过程中 两次击穿过程间隔要至少在 30s 以上。如果被检测的绝缘油介电强度测试仪为全 自动型,假设击穿点检测如 4.1 所描述,可以将仪器设定为 6 次自动击穿试验, 试验过程中静置时间设定为 60s,搅拌时间设定为 0,则开始试验以后整个试验过 程都将自动完成。

试验过程中一定要保证引出的高压线绝缘安全可靠,高压电缆与地面,其他 仪器以及线缆之间要保证足够的安全距离。

4.3 检测结果

当检测过程按照设定的检测流程完成后, 仪器主机会自动停止检测过程, 提示用户是否保存检测结果。检测结果的展示方式如图 10, 图 5 所示。图 10 展示的为检测结果的文字描述, 其内容包括各次流程步骤所得到的击穿电压值和空升过程中计算的升压速率, 波形畸变率, 最大输出电压。图 5 所展示的为各个击穿流程中击穿瞬间前后 5s 钟的波形记录, 以及电压空升至最大输出电压前后的 5s 钟的波形记录。

如果试验开始前,选择的自动评估试验结果,仪器会根据设定的标准(标准

包括仪器标称的最大输出电压,最大电压允许误差,仪器标称的升压速率,升压 速率允许误差,仪器标称的精度等级)对试验结果进行自动评估,为了计算击穿 电压的误差,用户必须在试验结果展示界面输入被检测的绝缘油介电强度测试仪 所测得的各次击穿值。当所有的被试品击穿电压值被输入后点击仪器结果展示界 面右下方的自动评估按钮, 仪器会自动计算击穿电压误差, 升压速率误差, 最大 输出电压误差等等,并给出检测结果。