使用注意事项	2
一、概述	3
1.1 概述	3
1.2 功能特点	3
1.3 技术指标	4
二、外形及结构	5
2.1 主机外形示意图	5
2.2 整机配置	5
三、连接	6
3.1 准备工作	6
3.2 主机连接	6
3.2.1 放电电缆连接	6
3.2.2 其它	7
3.3 PC 机连接	7
3.4 运行	7
四、功能操作	8
4.1 开机	8
4.2 本机放电	8
4.2.1 核对性放电设置	8
4.2.2 并机负载放电设置	8
4.3 外设放电	9
4.4 数据管理	10
4.4.1 数据查询	10
4.4.2 数据删除	10
4.4.3 数据上传	11
4.4.4格式化	11
4.5 系统管理	12
4.5.1 零点校正	12
4.5.2 计量校正	12
4.5.3 主板参数	13
4.5.4 系统时间	13
五、日常维护	14
5.1 清洁维护	14
5.1.1 主机的清洁维护	14
5.1.2 夹具的清洁维护	14
5.2 存放	14
六、常见问题解答及使用技巧	14

目 录

使用注意事项、阅读提示

使用注意事项

本说明书用于指导用户对该仪器进行操作。

- ▶ 操作者必须具有电工以上资职。
- ▶ 操作者在使用中应格外注意人员、设备的安全。
- 该仪器属于精密测试设备,在使用过程中应轻拿轻放,切勿乱扔乱摔,其结果轻者会导致外壳变形,重者会导致内部元件出现故障,影响正常使用。
- ▶ 避免喷溅液体到该仪器表面,以免进入系统造成永久伤害,可燃性气体可能引起爆炸。

为了您的安全,在操作该仪器前,请先阅读完本说明书中的全部内容。测量人员应熟悉所测试系统的特点。 采取正确的测试步骤,以免造成自身及工作区域其他人的伤害和检测设备的损坏,这一点是非常重要的。

我们假定操作者在使用本测试仪之前,已经对电池、充电系统和设备起动有了一个全面的了解。在使用本测 试仪前,请务必参考并遵守相关的安全注意事项,及被测试设备制造商提供的测试步骤。

安全信息 安全信息用来避免发生人员伤亡和设备损害。

阅读、理解并遵守本说明书中的安全信息及说明,安全信息包括:

- 危险! 表示非常紧急的危险情形, 如果不设法避免, 将可能导致严重的人员伤亡。
- 警告! 表示潜在的危险情形,如果不设法避免,将可能导致严重的人员伤亡。
- **注意!** 表示潜在的危险情形,如果不设法避免,将可能导致一般的人员伤害。
- 重要! 表示潜在的危险情形, 如果不设法避免, 将可能导致测试设备的损坏。

重要安全指引

警告!

爆炸危险! 电池产生的气体极易爆炸。

- 阅读、理解并遵守所有与测试仪、电池、及电池附近任何其它设备的指引。
- 禁止吸烟、点火柴,禁止将金属工具放在电池附近或在电池附近制造火花。
- 使用测试仪前应将接线端清理干净。清理时注意保护眼睛、鼻子和嘴巴。用苏打和水来中和酸性以降低空气的腐蚀性。
- 不要将测试仪放在雨雪中或潮湿的环境中。
- 不要让电池气体或硫酸接触测试仪的壳体。
- 千万不要对冻结的电池进行充电、测试,或施加载荷。执行以上操作前应先将电池解冻,并暖和到室温。对 冻结的电池进行充电、或试图对其进行测试,将引起电池爆炸并导致人员受伤。
- 在进行测试前应确认所有测试接头都是按照指引进行连接的。
- 确保两个电池夹与电池连接牢固。

电池爆炸可导致人员伤亡。

警告!

防止烧伤

电池短路产生的电流足以熔化各种饰物,并使其焊接在金属上。在电池附近工作时要将各种饰物取下。 短路将导致人员受伤。

一、概述

1.1 概述

该仪器是专门针对蓄电池组进行核对性放电实验、容量测试、电池组日常维护、工程验收以及其它直流电源带载能力的测试而设计

该仪器功耗部分采用新型 PTC 陶瓷电阻作为放电负载,完全避免了红热现象,安全可靠无污染。整机由微处 理器控制,液晶显示、中文菜单。外观设计新颖,体积小、重量轻、移动方便。各种放电参数设定完成后,自动 完成整个恒流放电过程。完全实现智能化。使整个放电过程更安全。

该仪器系列便携、智能化的专业设计使放电测试工作变得简捷、轻松,大大降低了专业维护人员的劳动强度, 也提高了放电测试的科学性和智能化。

1.2 功能特点

- 采用 PTC 陶瓷电阻,避免了红热现象,使整个放电过程更安全。
- 有 USB 接口,可将放电过程的数据存入 U 盘,并导入 PC 机。PC 数据管理软件可对电池放电的过程进行分析、并可生成相应的数据报表。使数据的转存更加方便。
- 采用智能单片机 ARM 控制、液晶中英文显示。菜单操作简单明了。
- 自动保护功能,设定放电时长到、放电容量到;蓄电池组电压低于设定的最低保护电压;负载连线出现 异常等,自动停止放电并报警,同时自动记录停机方式。
- 可设定测试/放电终止条件,包括电池组终止电压、放电电流、放电时间。

1.3 技术指标

型号	放电电流	电池组电压	放电终止电压	供电电源	尺寸(mm)	重量	
48V150A	0~150A					$415 \times 180 \times 310$	9kg
48V200A	0~200A	DC48V	10~60V 可调	$AC220 \pm 15\%$ DC48V	$520 \times 180 \times 393$	13kg	
48V300A	0~300A				$570 \times 225 \times 460$	15kg	
220V30A	0~30A				$415 \times 180 \times 310$	9kg	
220V50A	0~50A	DC220V	176~275V 可调	AC220±15% DC220V	$520 \times 180 \times 393$	13kg	
220V100A	0~100A				$570 \times 225 \times 460$	15kg	
110V80A	0~80A		AC220±15%		$480 \times 180 \times 350$	11kg	
110V100A	0~100A	DCIIOV	98~1211 可调	DC110V	$520 \times 180 \times 393$	13kg	
140V100A	0~100A	DC140V	126~154V 可调	AC220±15% DC140V	$520 \times 180 \times 393$	14kg	
380V20A	0~20A				$570 \times 225 \times 460$	15kg	
380V50A	0~50A	DC380V	304~456V 可调	AC220±15% DC380V	$600 \times 235 \times 460$	18kg	
380V100A	0~100A				$500 \times 780 \times 704$	38kg	
80V~482V20A	0~20A				$570 \times 225 \times 460$	15kg	
80V~482V50A	0~50A	DC80V~482V	80~482V 可调	AC220±15% DC80~482V	$600 \times 235 \times 460$	18kg	
80V~482V100A	0~100A				$500 \times 780 \times 704$	38kg	
测量精度 电压测量精度: 0.5% 电流测量精度: 1%							
通讯接口		数据存储: USB 并机通讯: RS232					
采样间隔		5s~1min					
散热方式		强制风冷					
工作环境		温度 0℃~50℃ 湿度 5%~90%					
屏幕尺寸		128×64LCD					
存储容量		128M					

二、外形及结构

2.1 主机外形示意图:

该仪器外形图 (仅供参考)

2.2 整机配置

序号	品名	数量	备注
1	该仪器主机	1	
2	U 盘	1	
3	放电电缆	2	红、黑各一条
4	电流传感器(选配件)	1	不同电流等级,量程不同。
5	AC220V 电源线	1	
6	说明书	1	
7	铝合金包装箱	1	

三、连接

3.1 准备工作

确认需要进行放电测试的蓄电池组是否与放电仪电压等级一致!

在与该仪器进行连接前,首先确认放电电池组是否已经退出运行状态,是否已经与充电电源和负载断开。以 免在放电过程中发生意外。

检查电池组及该仪器周围是否有足够场地,场地周围是否存在易燃易爆物品,空气中是否存在易燃易爆气体。 检查该仪器是否完好,电源开关是否在断开状态。

工作周围不得存在易燃易爆物品,空气中不得含有易燃易爆气体,防止爆炸的发生!

3.2 主机连接

3.2.1 放电电缆连接

首先连接电池组放电电缆。黑色放电电缆 大测试夹一端连接电池组负极,另一端快接插 头连接该仪器黑色快接插座。红色放电电缆大 测试夹一端连接电池组正极,另一端快接插头 连接该仪器红色快接插座。注意连接可靠,不 要有松动现象。**快接接头与快接插座连接好** 后,需要顺时针方向旋转以防脱落!放电结束 取下时逆时针旋转。

连接放电电缆和电压测试线时,注意安全,防止触电和短路的发生!

武汉南偌电气有限公司

由于放电电流较大,为了准确测量蓄电池组的电压,另配有电压测试线。电压测试线一端连接该仪器的电压 测试插座,另一端红色测试夹连接蓄电池组正极,黑色测试夹连接电池组负极。注意不要接反!

3.2.2 其它

如果需要 AC220V 供电,则需要使用电源线连接市电,并把工作电源转换开关置于交流供电档,否则转换 开关置于直流供电档。

如果有并机或使用外设放电检测功能,则需连接电流传感器。

3.3 PC 机连接

如果需要通过 PC 机进行实时监测,则需要连接数据通讯终端。数据通讯终端与 PC 机通过 USB 串口进行连接。PC 机运行监控软件即可。

3.4 运行

检查接线正确无误后,打开电源开关,液晶屏应显示正常后,即可根据操作说明**放电管理**完成各种测试/放 电参数的设置。

四、功能操作

4.1 开机

打开电源开关,稍作等待或按"确认"键进入该仪器主界面。主界面如下:

主菜单		
本机放电	系统管理	
其它放电	数据管理	
2009-09-0	2 14:31:28	

4.2 本机放电

4.2.1 核对性放电设置

在主菜单中,通过↑/↓方向键移动光标选中本机放电选项后,按【确认】键进入本机放电功能选择界面, 界面如下:

在此菜单中,通过↑/↓方向键移动光标选中核对性放电测试选项后,按【确认】键进入电池放电参数设置 界面,界面如下:

在电池放电参数设置界面中,通过↑/↓方向键选择要设置的项目,通过←/→方向键修改被选择的项目。电 池放电要设置的参数共有电池组类型、放电电流、总终止电压、放电容量、放电时间、电池极性。其中,电池组 类型有根据订购的产品型号可选择 24V、48V、110V、220V 380V 中几种或固定为其中的一种。放电电流是设定 放电仪工作电流(设置范围由订购产品的型号决定)。终止电压是电池组电压终止值。(终止电压设置一般是电池 组标称电压的 0.9 倍)。放电容量是电池组可放出容量的终止值。放电时间是本次放电时间长度。

当设置完放电参数后,按确认键弹出一个确认对话框。界面如下:

再次按下确认键,就会进入放电状态,按返回键则退回到参数设置界面。如果放电仪内部存储空间不够,则会弹出 "存储空间不够,是否删除数据?"的对话框,界面如下:

如果用户需要保存放电数据,则按返回键退出,在数据管理中把存储记录转存到U盘中,在删除数据即可!如果不需要保存数据,则直接按确认键,系统自动删除完数据后进入到放电状态。

4.2.2 并机负载放电设置

当所需要的放电电流超过放电仪本身的额定电流时,这时需要外加负载并联来扩大实际放电电流。例如当使

地址: 武汉市庙山大道 9 号东湖高新产业创新基地 11 栋 销售热线: 027-87207771 / 87207772 / 87207773

用 48V300A 的放电仪需要放 550A 电流时,则就要通过两台放电仪并联来实现放电(并机后的放电电流最大为 600A)。两台放电仪一台设为主机、另一台设为从机。具体操作如下: 从机操作流程:

本机放电 核对性放电测试 短时容量测试 并机负载放电

首先把自身设置为负载: 在本机放电菜单中,通过↑/↓方向键移动光标选中并机负载放电选项后,按【确 认】键即可。此时界面如下:

负载状态	
设置电流:	
测量电流:	
按返回退出负载状态	

主机操作流程:

本机放电	ģ
▼ 核对性放电测试 接续放电 ####################################	
开心口风车的初间马	

1、在本机放电菜单中,通过↑/↓方向键移动光标选中核对性放电测试选项后,按【确认】键进入放电参数设置界面,界面如下:

2、**注意:**在参数设置中,放电电流一项设置成所需要的电流 550A(设置值要大于额定电流才能并机成功)。 其他参数设置与核对性放电设置一样。

3、设好参数后,按下确认键进入到放电状态,整个并机放电过程中界面的显示、操作与核对性放电过程 一致。

4.3 外设放电

外设放电设置

-	短时容量测试	ŝ.
	补偿放电	
	外设放电	
	充电监测	

在主菜单中,通过↑/↓方向键移动光标选中外设放电选项后,按【确认】键进入外设放电参数设置界面, 界面如下:

在外设放电参数设置界面中,通过↑/↓方向键选择要设置的项目,通过←/→方向键修改被选择的项目。电 池放电要设置的参数共有电池组类型、电流钳类型、总终止电压、放电容量、放电时间。电流钳类型有100A/V、 200 A/V、400 A/V、800 A/V 4 种选择。终止电压是电池组电压终止值。放电容量是电池组可放出容量的终止值。

放电时间是本次放电时间长度。

当设置完放电参数后,按确认键弹出一个确认对话框。界面如下:

再次按下确认键,就会进入放电状态,按返回键则退回到参数设置界面。

4.4 数据管理

4.4.1 数据查询

在主菜单中,通过↑/↓方向键移动光标选中数据管理选项后,按【确认】键进入数据管理菜单,界面如下:

▼ 数据查询 格式化

在数据管理菜单中,通过←/→方向键移动光标选中数据查询选项后,按【确认】键进入数据显示列表,界 面如下:

选中要查询日期的数据

2006-06-25	6
2006-06-25	
2006-06-25	
2006-06-25	
2006-06-25	

按↓方向键可以查看其它时间的记录数据:

20	COCOC	-
220	查看	
] 20	写入U盘	
口 225	删除	
] 20⊾		

按下【确认】键查看其放电数据。界面如下:

已放容量: 356.73 AH		
截止电压: 42.8 Ⅴ	•	V
放电电流: 50.28 ▲	•	•
放电时间: 07时01分	总电压曲线图 U=45.62 ▼	电流曲线图 I=49.88A

用户可以通过按↑/↓方向键来切换界面,查看其他放电数据。

4.4.2 数据删除

在数据管理菜单中,界面如下:

在数据管理菜单中,通过↑/↓方向键移动光标选中数据删除选项后,按【确认】键进入数据删除界面,界 面如下:

正确密码是 1234。

一直按→方向键,直到屏幕出现 1234 时,按确认进入删除界面,界面如下:

按下确认键则删除掉选中的单条放电数据。

4.4.3 数据上传

在数据管理菜单中,界面如下:

在数据管理菜单中,通过↑/↓方向键移动光标选中写入U盘选项后。如果未插入U盘,则会弹出提示界面,如下:

如果已插入 U 盘,则直接保存数据到 U 盘,界面如下:

数据保存中...

数据写入完毕后,屏幕会显示"保存完毕!"此时按【返回】键返回到数据管理主界面。

4.4.4格式化

格式化操作将删除本机记录的所有数据

格式化密码 1234

4.5 系统管理

4.5.1 零点校正

选中参数管理菜单,选择零点校正选项,按确定进入。

2	参数管理	- į
	▼ 零点校正 注身技正	
	主板参数	

界面显示如下:

零」	点校正
20=0.0	21=0.0
Z2=0.0	Z3=0.0
校正	É中

再按确定键开始校正,完成后会自动退出。

在设备无法正确采集到放电电压,电流时,可进行零点校正。(一般建议不要使用。)

4.5.2 计量校正

此功能是校正电压和电流,密码是 9577。在系统管理菜单中,通过←/→方向键移动光标选中<mark>计量校正</mark>选项 后,按确认进入校正参数密码输入界面,界面如下:

ł	参数管理	- į
	零点校正 ♦ 计量校正 主板参数	

按确定键后,界面如下:

•	电池组电压校正	
	采集盒电压校正	
	放电电流校正	
	参数保存	

电池组电压校正

通过↑/↓方向键移动光标选中电池组电压校正选项后,按确认键则弹出一个选择框,界面如下:

电压校正	
测量电压:	
实际电压:■0.00↓	
Revise⇒	

通过←/→方向键选择好电池组类型(共有 24V、48V、110V、220V 4 种选择)。

电池组类型选择要和放电仪标称电压一致!即48V放电仪,电池组类型要选择48V,

同时把电压采集线接至 48V 电池组的两极,注意不要接反!

选定后按确认键则进入电压校正界面,如下:

电压校正		
测量电压:	48.25V	
校正电压:	48.00	

在电压校正界面下,通过←/→方向键移动光标来修改校正值,输入完毕后按【确认】键完成校正。 **放电电流校正**

通过 ↑/↓ 方向键移动光标选中放电电流校正选项后,按确认键进入电流校正界面,界面如下:

通过 ↑/↓ 方向键移动光标选中内部电流校正,按确认键进入内部电流校正,通过 ←/→方向键移动光标来修 改校正值,输入完毕后按【确认】键完成校正。

在电流校正选择界面,通过↑/↓方向键移动光标选中外部电流校正选项后,按确认键进入,此时弹出电流 钳类型选择界面,电流钳类型有25A/V、50A/V、100A/V、200A/V、400A/V、800A/V6种选择,通过按←/→方 向键来选择实际电流钳类型,选好后按确认键进入外部电流校正,界面如下:

参数保存

	电池组电压校正	- 3
	采集盒电压校正	
	放电电流校正	
٠	参数保存	

校正完成后,选择参数保存选项,保存参数,密码 9577。 4.5.3 主板参数

分机	用:	有
本机	ID :	000000

主板参数用来选择是否具有分机盒检测电压功能。出厂时已设好,建议不要更改。

本机 ID 出厂时已设好,可以不用更改。

4.5.4 系统时间

在系统管理菜单中,通过↑/↓方向键移动光标选中系统时间选项后,按【确认】校正参数,界面如下:

在系统时间设置界面中,通过↑/↓方向键选择要修改的项目,通过←/→方向键修改被选择的项目。

五、日常维护

5.1 清洁维护

5.1.1 主机的清洁维护

使用柔软的湿布与温和型清洗剂清洗设备。请不要使用擦伤型、溶解型清洗剂或酒精等,以免损坏主机 上的文字。

5.1.2 夹具的清洁维护

使用柔软的湿布与温和型清洗剂清洗夹具。请不要擦伤探头的金属部分,以免造成接触不良。

5.2 存放

当使用完后,应将仪器及时放入机箱内。所有夹具和连线应整理后放入机箱内相应位置。

六、常见问题解答及使用技巧

启动放电后立即停止放电

请检查放电参数设置及电池接线、电压测试线的连接状况。

开机后显示屏无显示

请检查输入电源接线端子是否接触良好。

按键失效或混乱

请检查是否有键卡住未弹起,如有使其弹起即可恢复正常工作。